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S RON { SPEXDEM analysis Page 2 of 7Document: SRON/SPEX/TRPB05Date: August 26, 1994Issue: Version 1.0/Rev. 2.0DIFFERENTIAL EMISSION MEASURE (DEM) ANALYSIS1 IntroductionIn many sources the X-ray spectrum is not a unique function of one single temperature (isothermalapproximation with a temperature-independent emission measure), but instead is determined by adistribution in temperature across the emission region (multi-temperature approach). In the lattercase the observed spectra are described in terms of a di�erential emission measure (DEM) distributionover the range of temperatures for which the instrument is sensitive.By some inversion technique one can derive the DEM from the observed spectrum, using a library oftheoretical spectra produced by the optically thin spectral code (and convolved with the consideredinstrument response).Before we proceed we de�ne here the di�erential emission measure in the following manner. Theobserved spectral ux F (�) (counts s�1) measured at Earth by a given instrument at wavelength �can be expressed as:F (�) = 14�d2 I f(�; T )n2edV = 14�d2 Z f(�; T )'(T ) dT � 14�d2 Z f(�; T )T'(T ) d lnT;where f(�; T ) is the spectral emissivity (counts cm5 s�1) for the line plus continuum emission as afunction of temperature T at wavelength �, convolved with the instrument response function; d (cm)is the distance to the source and '(T ) = n2e dVdT (cm�3 K�1) is the di�erential emission measure, ne(T )is the electron density (cm�3) and V the plasma volume (cm3). Note that the total emission measureis given by EM = R n2edV = R T'(T )d lnT .The DEM is derived from the observed spectrum by deconvolving T'(T ) from the measured spectralintensities, using the library of theoretical spectra. In the following we discuss two inversion methods.2 Iterative Withbroe-Sylwester methodIn the past we have applied for this deconvolution an iterative technique that is based on a weighting-factor method originally proposed by Withbroe (1975), modi�ed a few years later by Sylwester,and described by Sylwester et al. (1980), to interpret high-resolution X-ray spectra of solar ares(Withbroe-Sylwester method).The DEM technique was subsequently extended to broader wavelength ranges by Lemen, Mewe andSchrijver (1989) and applied to the analysis of EXOSAT transmission grating spectra of various late-type stars (Lemen et al. 1989, Schrijver et al. 1989). Later on (around 1992) Alkemade and Schrijverdeveloped a software package that originally was intended to be built in SPEX for the analysis of theobserved EUV E spectra and that contains a modi�ed version of the original Sylwester algorithm.



S RON { SPEXDEM analysis Page 3 of 7Document: SRON/SPEX/TRPB05Date: August 26, 1994Issue: Version 1.0/Rev. 2.0In document SRON/SPEX/TRPB01 (Sections 5.3.3. and 7.1.) we give a description of this methodwith various examples of the results of �ts on data and on simulated spectra.However, in the mean time Schrijver and Alkemade developed the software using another inversiontechnique as discussed by Craig and Brown (1986) which uses a second-order regularization (smooth-ing). This routine has now been built in SPEX and replaces a previously used Sylwester routine. Inthe following we give a description of the method (see also Mewe et al. 1994) with a slightly di�erentde�nition of the di�erential emission measure.3 Inversion method of regularization3.1 Formulation of the problemThe spectra emitted by stellar coronae are assumed to be linear combinations of isothermal plasmas:stellar coronae are optically thin, so that all temperature components are visible. The weightingfunction that measures the visibility of any component in the observed spectrum depends, amongother things (as discussed below), on the emissivity of the plasma given temperature and density. Asa consequence of the linearity of the problem, all temperatures simply add to the observed spectrum,regardless of where they occur on the disk or, in the case of binaries, on which binary component theyoccur. In our models we implicitly assume that all components are in thermal ionization equilibrium,thus ignoring possible transient e�ects, and we ignore e�ects associated with the plasma density.The observed spectra are interpreted as statistical realizations of linear combinations of isothermalspectra which are calculated using our code for optically thin plasmas. We address the inversionproblem of recovering the weighting function mentioned above, referred to as the \di�erential emissionmeasure (DEM) distribution" D = n2edV=d lnT from the observed spectrum.3.2 The inversion problemThe method of inversion used in the present paper is described by Craig and Brown (1986) andPress et al. (1992). Here we present a brief summary of the method and emphasize various speci�cpoints concerning the inversion of EUV E spectra: Let an isothermal plasma of temperature T emit aspectrum that, when incorporating interstellar absorption, instrumental e�ciencies, and instrumentalsmoothing, is observed as f (�;T). For a composite plasma with temperatures ranging from T0 up toTm the net observed spectrum g is given by:g(�) = Z f (�;T)D(T) d lnT: (1)Eq. (1) constitutes a Fredholm equation of the �rst kind for D(T). When discretized into bins intemperature (on a logarithmic grid of temperatures Tj = T0; � � � ;Tm) and wavelength (in wavelengthintervals of width �� at values �i = �0; � � � ; �n) this can be written as a vector equation:g = F �D (2)



S RON { SPEXDEM analysis Page 4 of 7Document: SRON/SPEX/TRPB05Date: August 26, 1994Issue: Version 1.0/Rev. 2.0in which F is a matrix composed of m columns and n rows, of which the elements are given byFij = R �i+���i f (�;Tj)d��lnT � fi(Tj)� lnT. Each column of Fij consists of a `spectral' vectorcontaining the discretized spectrum at a certain temperature. The formal least-squares solution ofthis problem requires an inversion of FTF �D = FT � g (3)in which FT is the transpose of F. Note that the terms [FTF]ij are proportional to dot productsfi � fj while the terms [FTg]j are proportional to fj � g. Basically, the inversion algorithm aimsat decomposing g into the spectral vectors f with the components of D being the multiplicativeconstants. This inversion process is however ill-conditioned for a Fredholm equation of the �rst kind.The reason is that the kernel of Eq. (1) in general smoothes the information contained in the DEMand that during the inversion process this information can not be retrieved. Therefore the inversionprocess is not unique. In fact, any polynomial of order p > m can be made to satisfy Eq. (1). Thisimplies that the results of inversion methods based on the iterative relaxation of an (assumed) initialDEM have to be considered with great care. In other words: the column vectors f which make up Fdo, in general, not constitute a orthogonal set.Let us now consider the case that g represents an observed spectrum, indicated as �g, which containsnoise. Measurement errors can then be taken into account by de�ning s as the geometric mean oferrors (sn = s1 � s2 : : : sn) and by letting �gi ! s�gi=si and Fij ! sFij=si. The solution of Eq. (3) willnow be subjected to the inuence of data noise which will cause arti�cial high-frequency oscillationsin the behaviour of D. The classical way of obtaining the solution is by minimizing the functional(generalized least squares) min ���F �D� �g���2 (4)in which one recognizes the �2-method. Because information concerning D is lost, by the action of thekernel in Eq. (1), and because no unique solution exists, it is useful to impose an additional constrainton the solution next to the classical �2-constraint. By assigning certain properties to the solution onelimits the possible classes of solutions. Any additional constraint can formally be written as R �Dwhich represents some functional of the DEM. A constraint which requires the DEM to be positive isin general found to be too restrictive (see Thompson, 1991). A more general class of constraints arethose for which the �rst or second derivative of the DEM is minimized. Because derivatives of theDEM can be positive or negative it is useful to work with a quadratic constraint in the form jR �Dj2.The solution of the problem now consists of minimalizing two functionals, the classical �2 togetherwith jR �Dj2. Each of these functionals can be regarded as a constraint to the other. Eq. (4) canthen be replaced by min����F �D� �g���2 + % jR �Dj2� ; (5)where % is a Lagrangian multiplier commonly refered to as the regularisation parameter. The matrixform of the regularized solution is then given by(FTF + s2 %R) �D = FT � �g; (6)while the mean square uncertainty of Dj is given by�2j = s2[(FTF + s2%R)�1]jj: (7)The advantage of using a quadratic minimization principle together with a quadratic constraint isthat, in contrast to Eq. (3) , the left hand side of Eq. (6) is now non-degenerate so that the problemhas become well-posed (see Press et al. 1992).



S RON { SPEXDEM analysis Page 5 of 7Document: SRON/SPEX/TRPB05Date: August 26, 1994Issue: Version 1.0/Rev. 2.0The regularization parameter % (0 � % <1) controls the degree of smoothness of the solution. Thiscan clearly be seen in Eq. (5). The value of % controls the relative weight of the �2-constraint withrespect to the jR �Dj2-constraint. In the limit % ! 0 the �2-constraint becomes more importantwhile for % ! 1 the DEM-constraint becomes more important. There exist both subjective andobjective criteria for choosing a speci�c value for %. Because the aim of the whole exercise is to selectthat speci�c DEM which accurately models the data, the best choice for % is one which makes �2comparable to the number of degrees of freedom, so for which �2red approaches unity. Note that, as acriterium for selecting %, �2 is only used as an a posteriori measure of the goodness of the �t. If themodel spectra contain imperfections, e.g. not all observed lines are contained within the model, thenthe limit �2red � 1 will of course not been reached.A suitable choice for the quadratic constraint is given by R �D = D00 which leads to second-orderregularization. With this choice one aims to select that speci�c DEM for which the second derivativeis as smooth as possible and which is consistent with the data. If we choose as boundary conditionsthat D00 = 0 at T0 and Tm then the matrix R is given byR = 0BBBBBBBBB@ 1 �2 1 0 : : :�2 5 �4 1 0 : : :... . . . ...: : : 0 1 �4 6 �4 1 0 : : :... . . . ...: : : 0 1 �4 5 �2: : : 0 1 �2 1 1CCCCCCCCCA (8)The structure of the matrix clearly shows the smoothing over 5 adjacent temperature intervals. Ifthis width is smaller than the expected resolution of the process then the smoothing is likely tobe insu�cient. Higher order regularizations imply that more neighbouring temperature intervalsbecome coupled. The choice for smoothing over three intervals, and hence the choice of the constraintR �D =D00, is not arbitrary but is based on the intrinsic properties of X-ray spectra. This is discussedbelow.We stress that the above inversion method is not an iterative procedure. An iterative method requiresan initial DEM distribution, and, depending on the details of the distribution, the iteration maynot converge to the true best-�t solution, but may instead yield a solution corresponding to a localminimum in the �2-space (or any other measure of quality that may be used). This problem is avoidedby the method of regularization.3.3 General considerations concerning the inversion strategyThe �nite width, �T, of the temperature intervals over which any given spectral line contributes tothe observed spectrum leads to an intrinsic limit to the temperature resolution that can be achieved,regardless of the spectral resolution of the instrument. The result of the �niteness of �T is that intervalsof formation temperatures of di�erent spectral lines overlap. Hence, temperature information is spreadout over the typical width �T of the temperature intervals over which the lines are strong, i.e. overthe width of the formation interval for a single line which is generally roughly a factor of two intemperature (�T=T � 2).



S RON { SPEXDEM analysis Page 6 of 7Document: SRON/SPEX/TRPB05Date: August 26, 1994Issue: Version 1.0/Rev. 2.0The e�ects of a �nite �T can be inferred from Eq. (3). In x 3.2. we already noted that the spectralvectors f , which make up the columns of F, constitute a base on which the observed spectral vector�g is projected. In the ideal case the vectors f constitute an orthogonal set so that the matrix FTFcan be cast in a diagonal form, permitting a unique inversion. For a �nite �T, however, the matrixFTF maintains a diagonal shape, but the e�ective \width" of the diagonal band is equivalent to atemperature interval of approximately ln�T=�lnTj, so that a DEM consisting of a delta peak inelement j (Dk = 1 for k = j;Dk = 0 for k 6= j) is transformed into a peak in FTF �D with a widthof ln�T=�lnTj elements. Similarly, an isothermal source will yield a run of [FT � g]j with a widthof ln�T=�lnTj elements. Deriving D for an isothermal plasma from �g in the presence of noise andwith a �nite regularization will yield a peak only somewhat narrower than �T. Signi�cant separationof two delta functions is possible only if the spacing between the peaks is at least about 2�T.If the spectral resolution of the instrument is such that spectral lines formed at di�erent temperaturescannot be separated, an even more troublesome problem develops: if information from signi�cantlydi�erent temperatures is contained within the same wavelength interval, observational noise allowsthe spreading of information from one temperature to another. Imposing smoothing constraintstherefore contaminates the D at very di�erent temperatures. With worsening resolution, the o�-diagonal elements of FTF become stronger and stronger, relative to the diagonal elements, thusincreasing the interdependence of the rows and columns, and making the problem more and moreill-posed.It will be clear from the above considerations that both the continuum emission and the instrumentalbackground noise cause some degree of crosstalk of information over the entire temperature intervalstudied, resulting in a broad \wing" to the diagonal of FTF. We note that despite the problems arisingfrom the presence of a continuum it is important to �t both lines and continuum simultaneously giventhe fact that we found that the line-to-continuum ratio plays an important rôle in EUV E spectra.3.4 Optimal binning for a DEM inversion.In view of the discussion in x 3.3., we argue that contamination ofD over temperature ranges exceedingthe formation width of individual lines is limited if bins containing only continuum information andbins containing lines formed at signi�cantly di�erent temperatures, and bins with low S/N ratiosare given a low weight. In the EUV E spectra these conditions are largely ful�lled automatically ifthe spectra are weighted with the observational uncertainties, as discussed above: lines formed atdi�erent temperatures are generally well separated, and the continuum bins have low count rates, andthus relatively large uncertainties, so that the error weighting automatically reduces the inuence ofthese bins on the result of the inversion procedure. Because the temperature resolution is limitedto approximately ln�T, the spacing of the temperatures � lnT needs not be chosen much smallerthan that. In fact, the regularization matrix R should be chosen in a way to smooth over intervalsof about the width ln�T, because otherwise unrealistic features may be introduced. Combinationof these two statements results in the suggestion that the temperature resolution for D should beset at about 12 ln�T. Since in realistic situations �T=T � 2, logarithmic temperature intervals oflog��log(T)� � 0:15 su�ce, but we use a slightly �ner grid. In the analysis we use a range oftemperatures from 3 104 K up to 108 K divided in 36 logarithmically spaced temperature values (i.e.� log(T) ' 0:1). The choice of the lower temperature boundary is determined by the presence ofstrong He II lines which form below � 105 K. Omitting this temperature range leads to arti�cially
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