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DIFFERENTIAL EMISSION MEASURE (DEM) ANALYSIS

1 Introduction

In many sources the X-ray spectrum is not a unique function of one single temperature (isothermal
approximation with a temperature-independent emission measure), but instead is determined by a
distribution in temperature across the emission region (multi-temperature approach). In the latter
case the observed spectra are described in terms of a differential emission measure (DEM) distribution
over the range of temperatures for which the instrument is sensitive.

By some inversion technique one can derive the DEM from the observed spectrum, using a library of
theoretical spectra produced by the optically thin spectral code (and convolved with the considered
instrument response).

Before we proceed we define here the differential emission measure in the following manner. The
observed spectral flux F'(A) (counts s™!) measured at Earth by a given instrument at wavelength A
can be expressed as:

1 1 1
FOV = o $ A0V = o [0 nemyar = 2o [ funrem e,

where f(A,T) is the spectral emissivity (counts em® s~1) for the line plus continuum emission as a
function of temperature T at wavelength A, convolved with the instrument response function; d (cm)
is the distance to the source and ¢(7") = n? 2% (cm=3 K~1) is the differential emission measure, n.(7)
is the electron density (cm~3) and V the plasma volume (¢cm?®). Note that the total emission measure

is given by EM = [n2dV = [Te(T)dInT.

The DEM is derived from the observed spectrum by deconvolving Ty(T') from the measured spectral
intensities, using the library of theoretical spectra. In the following we discuss two inversion methods.

2 Iterative Withbroe-Sylwester method

In the past we have applied for this deconvolution an iterative technique that is based on a weighting-
factor method originally proposed by Withbroe (1975), modified a few years later by Sylwester,
and described by Sylwester et al. (1980), to interpret high-resolution X-ray spectra of solar flares
(Withbroe-Sylwester method).

The DEM technique was subsequently extended to broader wavelength ranges by Lemen, Mewe and
Schrijver (1989) and applied to the analysis of EXOSAT transmission grating spectra of various late-
type stars (Lemen et al. 1989, Schrijver et al. 1989). Later on (around 1992) Alkemade and Schrijver
developed a software package that originally was intended to be built in SPEX for the analysis of the
observed EUV E spectra and that contains a modified version of the original Sylwester algorithm.
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In document SRON/SPEX/TRPBO1 (Sections 5.3.3. and 7.1.) we give a description of this method
with various examples of the results of fits on data and on simulated spectra.

However, in the mean time Schrijver and Alkemade developed the software using another inversion
technique as discussed by Craig and Brown (1986) which uses a second-order regularization (smooth-
ing). This routine has now been built in SPEX and replaces a previously used Sylwester routine. In
the following we give a description of the method (see also Mewe et al. 1994) with a slightly different
definition of the differential emission measure.

3 Inversion method of regularization

3.1 Formulation of the problem

The spectra emitted by stellar coronae are assumed to be linear combinations of 1sothermal plasmas:
stellar coronae are optically thin, so that all temperature components are visible. The weighting
function that measures the visibility of any component in the observed spectrum depends, among
other things (as discussed below), on the emissivity of the plasma given temperature and density. As
a consequence of the linearity of the problem, all temperatures simply add to the observed spectrum,
regardless of where they occur on the disk or, in the case of binaries, on which binary component they
occur. In our models we implicitly assume that all components are in thermal ionization equilibrium,
thus ignoring possible transient effects; and we ignore effects associated with the plasma density.

The observed spectra are interpreted as statistical realizations of linear combinations of isothermal
spectra which are calculated using our code for optically thin plasmas. We address the inversion
problem of recovering the weighting function mentioned above, referred to as the “differential emission
measure (DEM) distribution” D = n2dV/dInT from the observed spectrum.

3.2 The inversion problem

The method of inversion used in the present paper is described by Craig and Brown (1986) and
Press et al. (1992). Here we present a brief summary of the method and emphasize various specific
points concerning the inversion of KUV FE spectra: Let an isothermal plasma of temperature T emit a
spectrum that, when incorporating interstellar absorption, instrumental efficiencies, and instrumental
smoothing, is observed as (A, T). For a composite plasma with temperatures ranging from Tg up to
Ty, the net observed spectrum g is given by:

g(\) = /f(/\,T)D(T) din'T. (1)

Eq. (1) constitutes a Fredholm equation of the first kind for D(T). When discretized into bins in
temperature (on a logarithmic grid of temperatures T; = Ty, - - -, Trm) and wavelength (in wavelength
intervals of width AX at values Aj = Ag, - -+, Ay) this can be written as a vector equation:

g=F-D (2)
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in which F is a matrix composed of m columns and n rows, of which the elements are given by
F; = ;‘:+A>\ f(A, T))dAAInT = £i(T;)AInT. Each column of Fj; consists of a ‘spectral’ vector
containing the discretized spectrum at a certain temperature. The formal least-squares solution of
this problem requires an inversion of

F'Fr . D=F g (3)

in which F7 is the transpose of F. Note that the terms [FTF]Z']' are proportional to dot products
f; - f; while the terms [FTg]j are proportional to f; - g. Basically, the inversion algorithm aims
at decomposing g into the spectral vectors f with the components of D being the multiplicative
constants. This inversion process is however ill-conditioned for a Fredholm equation of the first kind.
The reason is that the kernel of Eq. (1) in general smoothes the information contained in the DEM
and that during the inversion process this information can not be retrieved. Therefore the inversion
process is not unique. In fact, any polynomial of order p > m can be made to satisfy Eq. (1). This
implies that the results of inversion methods based on the iterative relaxation of an (assumed) initial
DEM have to be considered with great care. In other words: the column vectors f which make up F
do, in general, not constitute a orthogonal set.

Let us now consider the case that g represents an observed spectrum, indicated as g, which contains
noise. Measurement errors can then be taken into account by defining s as the geometric mean of
errors (s” = s1 - 82...8,) and by letting gi — sgi/si and Fj; — sFy;/s;. The solution of Eq. (3) will
now be subjected to the influence of data noise which will cause artificial high-frequency oscillations
in the behaviour of D. The classical way of obtaining the solution is by minimizing the functional
(generalized least squares)

o2
min‘F~D—g‘ (4)

in which one recognizes the y?-method. Because information concerning D is lost, by the action of the
kernel in Eq. (1), and because no unique solution exists, it is useful to impose an additional constraint
on the solution next to the classical y?-constraint. By assigning certain properties to the solution one
limits the possible classes of solutions. Any additional constraint can formally be written as R - D
which represents some functional of the DEM. A constraint which requires the DEM to be positive is
in general found to be too restrictive (see Thompson, 1991). A more general class of constraints are
those for which the first or second derivative of the DEM is minimized. Because derivatives of the
DEM can be positive or negative it is useful to work with a quadratic constraint in the form |R - D|2.
The solution of the problem now consists of minimalizing two functionals, the classical y? together
with |R - D|*. Each of these functionals can be regarded as a constraint to the other. Eq. (4) can
then be replaced by

~|2
min (‘F~D—g‘ +Q|R~D|2), (5)

where ¢ is a Lagrangian multiplier commonly refered to as the regularisation parameter. The matrix
form of the regularized solution is then given by

(FTF + 5% ¢R) D =F" &, (6)
while the mean square uncertainty of Dj is given by

o} = °[(F'F + soR) ™. (7)

The advantage of using a quadratic minimization principle together with a quadratic constraint is
that, in contrast to Eq. (3) , the left hand side of Eq. (6) is now non-degenerate so that the problem
has become well-posed (see Press et al. 1992).
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The regularization parameter ¢ (0 < g < 00) controls the degree of smoothness of the solution. This
can clearly be seen in Eq. (5). The value of ¢ controls the relative weight of the y*-constraint with
respect to the R - D|2—constraint. In the limit ¢ — 0 the yZ-constraint becomes more important
while for ¢ — oo the DEM-constraint becomes more important. There exist both subjective and
objective criteria for choosing a specific value for g. Because the aim of the whole exercise is to select
that specific DEM which accurately models the data, the best choice for ¢ is one which makes y?2
comparable to the number of degrees of freedom, so for which x%, approaches unity. Note that, as a
criterium for selecting g, ¥? is only used as an a posteriori measure of the goodness of the fit. If the
model spectra contain imperfections, e.g. not all observed lines are contained within the model, then
the limit x2,; &~ 1 will of course not been reached.

A suitable choice for the quadratic constraint is given by R - D = D” which leads to second-order
regularization. With this choice one aims to select that specific DEM for which the second derivative
1s as smooth as possible and which is consistent with the data. If we choose as boundary conditions
that D" = 0 at Tg and T, then the matrix R is given by

The structure of the matrix clearly shows the smoothing over 5 adjacent temperature intervals. If
this width is smaller than the expected resolution of the process then the smoothing is likely to
be insufficient. Higher order regularizations imply that more neighbouring temperature intervals
become coupled. The choice for smoothing over three intervals, and hence the choice of the constraint
R-D = D”, is not arbitrary but is based on the intrinsic properties of X-ray spectra. This is discussed
below.

We stress that the above inversion method is not an iterative procedure. An iterative method requires
an initial DEM distribution, and, depending on the details of the distribution, the iteration may
not converge to the true best-fit solution, but may instead yield a solution corresponding to a local
minimum in the y?-space (or any other measure of quality that may be used). This problem is avoided
by the method of regularization.

3.3 General considerations concerning the inversion strategy

The finite width, o1, of the temperature intervals over which any given spectral line contributes to
the observed spectrum leads to an intrinsic limit to the temperature resolution that can be achieved,
regardless of the spectral resolution of the instrument. The result of the finiteness of o1 is that intervals
of formation temperatures of different spectral lines overlap. Hence, temperature information is spread
out over the typical width o1 of the temperature intervals over which the lines are strong, i.e. over
the width of the formation interval for a single line which is generally roughly a factor of two in
temperature (o7/T = 2).
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The effects of a finite o can be inferred from Eq. (3). In § 3.2. we already noted that the spectral
vectors f, which make up the columns of F, constitute a base on which the observed spectral vector
g is projected. In the ideal case the vectors f constitute an orthogonal set so that the matrix FF
can be cast in a diagonal form, permitting a unique inversion. For a finite o, however, the matrix
FTF maintains a diagonal shape, but the effective “width” of the diagonal band is equivalent to a
temperature interval of approximately Inor/AInT;, so that a DEM consisting of a delta peak in
element j (D = 1 for k = j;Dj, = 0 for k # j) is transformed into a peak in F'F - D with a width
of Inor/AlInT; elements. Similarly, an isothermal source will yield a run of [F? - g]; with a width

of Inor/AInT; elements. Deriving D for an isothermal plasma from g in the presence of noise and
with a finite regularization will yield a peak only somewhat narrower than or. Significant separation
of two delta functions is possible only if the spacing between the peaks is at least about 2o.

If the spectral resolution of the instrument is such that spectral lines formed at different temperatures
cannot be separated, an even more troublesome problem develops: if information from significantly
different temperatures is contained within the same wavelength interval, observational noise allows
the spreading of information from one temperature to another. Imposing smoothing constraints
therefore contaminates the D at very different temperatures. With worsening resolution, the off-
diagonal elements of FTF become stronger and stronger, relative to the diagonal elements, thus
increasing the interdependence of the rows and columns, and making the problem more and more
ill-posed.

It will be clear from the above considerations that both the continuum emission and the instrumental
background noise cause some degree of crosstalk of information over the entire temperature interval
studied, resulting in a broad “wing” to the diagonal of FTF. We note that despite the problems arising
from the presence of a continuum it is important to fit both lines and continuum simultaneously given
the fact that we found that the line-to-continuum ratio plays an important role in EUV E spectra.

3.4 Optimal binning for a DEM inversion.

In view of the discussion in § 3.3., we argue that contamination of D over temperature ranges exceeding
the formation width of individual lines 1s limited if bins containing only continuum information and
bins containing lines formed at significantly different temperatures, and bins with low S/N ratios
are given a low weight. In the FUV E spectra these conditions are largely fulfilled automatically if
the spectra are weighted with the observational uncertainties, as discussed above: lines formed at
different temperatures are generally well separated, and the continuum bins have low count rates, and
thus relatively large uncertainties, so that the error weighting automatically reduces the influence of
these bins on the result of the inversion procedure. Because the temperature resolution is limited
to approximately Inor, the spacing of the temperatures AlnT needs not be chosen much smaller
than that. In fact, the regularization matrix R should be chosen in a way to smooth over intervals
of about the width InoT, because otherwise unrealistic features may be introduced. Combination
of these two statements results in the suggestion that the temperature resolution for D should be
set at about %ln or. Since in realistic situations op/T = 2, logarithmic temperature intervals of
log(A log(T)) ~ 0.15 suffice, but we use a slightly finer grid. In the analysis we use a range of
temperatures from 3 10* K up to 10% K divided in 36 logarithmically spaced temperature values (i.e.
Alog(T) ~ 0.1). The choice of the lower temperature boundary is determined by the presence of
strong He II lines which form below ~ 105 K. Omitting this temperature range leads to artificially
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bad x?. Solving Eq. (6) requires the inversion of N x N matrices if we use a temperature grid of
N points. The choice of R (Eq. (8)) implies that information does not propagate over temperature
intervals larger then a typical line formation width or.

The wavelength binning of the spectra needs not be better than slightly below the instrumental
resolution o. Hence, for a wavelength interval of Ay to Ay a total of about (Ay — Ag)/({F2)/2) is
sufficient, so that one may choose a binning corresponding to about half the spectral resolution.
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